Status of XAL in CSNS

Na Wang, Yuan-Yuan Wei for Accelerator Physics Group

Institute of High Energy Physics

Outline

- Overview
- Preliminary physics needs
- The progress of application software
- Summary

Overview

- The phase-I CSNS facility consists of an 80-MeV H- linac, a 1.6-GeV RCS, 2 beam transport lines, a target station, and 3 instruments.
- Upgradable to 500kW at repetition rate of 25Hz and 20 instruments.
- The design is almost fixed with the officially start of the project.

Preliminary physics needs

• RFQ

- Measurement of the transmission efficiency vs. RF voltage.
- DTL
 - Operation mode saving and calling
 - Parameter setting (RF parameters & Lattice)
 - Measurements (Orbit & Transmission efficiency)
- Beam Transport Lines LEBT&MEBT&LRBT&RTBT
 - Lattice on line matching, Mode saving and calling
 - Measurements (Twiss parameters & Emittance & Orbit)
 - Orbit correction
 - Buncher parameter tuning

RCS

- DC Mode
 - Measurements (Circumference, Twiss parameters & tune, COD, Fudge factor, Dispersion, Chromaticity)
 - Parameter correction (COD, Twiss parameters, Dispersion, Chromaticity)
- AC Mode
 - Mode saving and calling, online matching
 - Measurements (COD, Twiss parameters & tune, Timing jitter, Chromaticity, Dispersion, Response matrix, ICA, Fudge factor)
 - Parameter correction (COD, Timing jitter, Chromaticity, Dispersion)
- Injection (Injection bump measurement, Orbit correction & adjustment, Painting mode saving & calling, fixed bump correction)
- Extraction (Extraction orbit display & tuning, kicker online matching)
- Collimation system tuning
- RF system tuning (RF curve setting and readback)

Plan for application software development

- The development of application software for commissioning has been started.
- SNS/SLAC version XAL have been used as the base of development.
- Developing XAL to meet the requirement of CSNS

The progress of application software

- With the application of virtual accelerator, many functions have been performed by transplanting XAL or developing.
 - RTBT/LRBT Orbit Correction
 - RCS Closed Orbit Correction
 - RCS Optics Measurement
 - Injection Painting Bump Control
 - Collimator Control
 - RF Curve Setting And Readback

RTBT/LRBT Orbit Correction

After correction, the measured orbit agrees well with the predicted one.

Comparison of XAL results with AT

RCS Closed Orbit Correction

RCS Optics Measurement

Dispersion Measurement

		n a b	loocuromont (ri	ng) Untitl	od rm		_ 、				
20 20		ngr	heasurement - (m	ng) - Undu	ea.rm		,				
File Edit Accelerator	Mode Vie	w	Window Help								
		-									
Tune/Quad Corr. Energy Chromaticity Dispersion											
Get Dispersion											
Dispersion in the Ring											
BPM	D(m)		> T T T T T		······ ·		1				
Ring_Diag:R1BPM01	0.0056	_	з <u> </u>								
Ring_Diag:R1BPM02	0.0044										
Ring_Diag:R1BPM04	1.9			*	<u> </u>	•					
Ring_Diag:R1BPM05	2.16		2		l V	N					
Ring_Diag:R1BPM08	2.17										
Ring_Diag:R1BPM09	1.9		+ + + + + + - + - + - + - + - + - + - +			+ $+$ $+$ $+$ $+$					
Ring_Diag:R1BPM11	0.0054										
Ring_Diag:R1BPM12	0.0064		▲ ↓ ↓ ↓ ↓	/							
Ring_Diag:R2BPM12	-7.3E-4		+++++			++++++++					
Ring_Diag:R2BPM11	-0.00215										
Ring_Diag:R2BPM09	1.9		o			• • •	<u>+-</u>				
Ring_Diag:R2BPM08	2.16						+				
Ring_Diag:R2BPM05	2.17										
Ring_Diag:R2BPM04	1.9		, <u>+</u>								
Ring_Diag:R2BPM02	0.0013		-r +++++	+ + + + + +		+ + + + +	+-+				
Ring_Diag:R2BPM01	1.67E-5		0 1	.0 20	30	40	50				
Ring_Diag:R3BPM01	-0.00448				s(m)						
Ring_Diag:R3BPM02	-0.00369										
Ring_Diag:R3BPM04	1.908										
Ring_Diag:R3BPM05	2.17										
Ring_Diag:R3BPM08	2.17										
Ring_Diag:R3BPM09	1.9										
Ring_Diag:R3BPM11	-0.00394										
Ring Diag:R3BPM12	-0.00457	-									

Tunes and phase advances Measurement

Getting tunes and phase advances by cosine fitting

Getting tunes by FFT

- BPM TBT data is from AT simulation
- •The results are consistent with the AT simulations

•The CSNS RCS has 5 families of quadrupoles

- 4 for focusing quadrupoles, with 8 quadrupoles in each
- •1 for defocusing quadrupole with 16 quadrupoles
- •5 independent power supplies

•Finding the 5 quadruple errors by minimizing the difference between the measured phase advances and the model's

•Simplex method is adopted

Finding quad errors

RCS Injection Painting Bump

Saving and calling of different injection painting curves.

Collimator Control

🛿 Ring Collimation - Untitled.collimation _ 🗆 ×										
File Edit View Window Help										
	Tatallas		Efficiency		66.0					
	lotalloss	0.0	Efficiency	0.0	64.0					
SELECT ALL	Set position	Set step	Nominal	Pick-up						
CP_UP	55.8	+0.0	55.8	57.9	62.0					
CP_DOWN	55.8	+0.0	55.8	57.9	60.0					
CP_LEFT	58.9	+2.0	56.9	57.1	58.0					
CP_RIGHT	56.9	+0.0	56.9	57.1	56.0					
CS1_UP	54.8	+0.0	54.8	60.6	12-09-05 09:48 12-09-05 09:52 12-09-05 09:55 12-09-05 0					
CS1_DOWN	54.8	+0.0	54.8	60.6						
CS1_LEFT	53.0	+0.0	53.0	59.4						
CS1_RIGHT	53.0	+0.0	53.0	59.4						
CS2_UP	59.7	+0.0	59.7	57.0						
CS2_DOWN	59.7	+0.0	59.7	57.0	1.04E-2					
CS2_LEFT	57.0	+0.0	57.0	55.3	1.026-2					
CS2_RIGHT	57.0	+0.0	57.0	55.3						
CS3_UP	61.3	+0.0	61.3	51.4	Time					
CS3_DOWN	60.9	-0.4	61.3	51.4						
CS3_LEFT	57.8	+0.0	57.8	48.9	0.009					
CS3_RIGHT	57.8	+0.0	57.8	48.9	· 열 0.007 ······ ···· ····· ······ ······ ······					
CS4_UP	52.7	+0.0	52.7	50.7	g 0.005					
CS4_DOWN	52.7	+0.0	52.7	50.7	g 0.004					
CS4_LEFT	49.7	+0.0	49.7	48.0	0.002 ·····					
CS4_RIGHT	49.7	+0.0	49.7	48.0	0.000 BLM1 BLM2 BLM3 BLM4 BLM5 BLM6					
Move to	Save mo	Set Def	Display	Break	BLM1 BLM2 BLM3 BLM4 BLM5 BLM6					

- Two stage collimation system
 - 1 primary collimator
 - 4 secondary collimators
- Each collimator consists of four jaws. Each one can be moved independently.
- The collimator jaws need to be adjusted to obtain a high collimation efficiency.

RF Curve Setting And Readback

- The RF system consists of 8 RF cavities.
- The RF setting varies with the beam energy.
- The RF curve setting includes voltage, phase and frequency.
- Readbacks of the RF curves for each cavity are required.

Errors

- During the transplanting, we have found some errors as we have started with a considerably old version of XAL.
 - Twiss parameters calculation with decimal tune above 0.5

Probe P	robe Editor Run Synchron	nize Enable PV Logging	Lattice Tree			Probe	Probe Editor Run Synchron	nize Enable PV Logging	Lattice Tree			
Accel	BV El men	s	alpha-x	b	eta-x	Accel	Firment		alaha y	halo v	alaha y	hate u
Sequence	Begin Of Ring1	0.0000	-0.0000	-6.4254	0.0000	ACCO	Element Bagin Of Ring1	5	aipna-x	Deta-X	aipna-y	beta-y
Lattice	BEGIN_Ring	0.0000	+0.0000	-0.4204	0.0000	Sequence	BEGIN Bing	0.0000	0.0000	0.4203	0.0000	5.7560
Droho	-	0.0000	-0.0000	-6.4254	0.0000	Lattice	BEGIN_KING	0.0000	0.0000	6.4253	0.0000	5 7569
Probe	DR1	5.5000	0.8560	-11.1333	0.9553	Probe	DR1	5 5000	-0.8560	11 1333	-0.9554	11 0115
Trajectory	Ring_Mag:Q_AU1x	5.7050	-0.8210	-11.1405	2.7585	Traiactory	Bing Mag:O A01x	5 7050	0.8211	11 1405	2 7587	11 7650
Result Table 1	ELEMENT_CENTER.Ring	5.0100	2 2060	40 4720	2 (585	Trajectory	ELEMENT CENTER Bing	5 7050	0.8211	11 1405	-2 7587	11 7650
Result Table 2	DD2	6.7100	-2.3909	-10.47.59	4.9009	Result Table 1	Ring Mag Q A01y	5,9100	2 3969	10.4739	-4 9090	13 3208
Diete	Ring Mag(O A02y	7 1600	-1.0017	-7.0510	0.4101	Result Table 2	DR2	6.7100	1.8817	7.0510	-6.4163	22.3810
PIOLS	ELEMENT CENTER Ring	7 1600	0.0423	6 2175	0.3625	Plots	Ring Mag:Q A02x	7.1600	0.0423	6.2175	-0.3626	25.5567
	Ring Mag O A02v	16100	1.7765	-6 9688	-5 8546	0.000	ELEMENT_CENTER:Ring_	7.1600	0.0423	6.2175	-0.3626	25.5567
	DR3	8.7500	2 4523	-11.84.3.3	1-4.0895		Ring_Mag:Q_A02y	7.6100	-1.7764	6.9687	5.8548	22.9838
	Ring Mag(Q / PL PL PL	CROURNOR T		ILOPT 7	ON TAL		DR3	8.7600	-2.4622	11.8432	4.0896	11.5478
	ELEMENT_CE ELEMENT	SEQUENCE I		HUKIZ	UNIAL		Ring_Mag:Q_A03x	8.9650	-0.8633	12.5313	2.3977	10.2301
	Ring Mag:Q erement	Noge. A Ddist 1	betax alfax	mux	x(co) px(co) D		ELEMENT_CENTER:Ring	. 8.9650	-0.8633	12.5313	2.3977	10.2301
	DR4 nate		[m] [1]	[2pi]	[mm] [.001] [.	1	Ring_Mag:Q_A03y	9.1700	0.8311	12.5380	0.9761	9.5448
	Ring_Mag:DH						DR4	12.9700	0.3187	8.1689	0.1987	5.0809
	ELEMENT_C& RCS	1 0.000	6.425 0.000	0.000	0.0000 0.000	1	Ring_Mag:DH_A01x	14.0200	0.1787	7.7852	0.0589	4.7229
	Ring_Mag:DH R1	1 0,000	6.425 0.000	0.000	0.0000 0.000		ELEMENT_CENTER:Ring	14.0200	0.1787	7.7852	0.0589	4.7229
	DR5 R11	1 0,000	6, 425 0, 000	0,000	0,0000 0,000	1	Ring_Mag:DH_A01y	15.0700	0.0387	7.4269	-0.0848	4.8333
	Ring_Mag:DH I.O.	1 5 350	10 880 -0 833	0 111	0 0000 0 000	1	DR5	16.2700	-0.1231	7.5281	-0.3349	5.3370
	ELEMENT_CE LOF	1 5 500	11 133 -0.956	0 113	0.0000 0.000		Ring_Mag:DH_A02x	17.3200	-0.2631	8.0664	-0.4561	6.0755
	Ring_Mag:DH LQD	1 5 010	10 474 9 207	0.110	0.0000 0.000		ELEMENT_CENTER:Ring	17.3200	-0.2631	8.0664	-0.4561	6.0755
	DR6 KIQUI	1 5.910	10.414 2.391	0.119	0.0000 0.000		Ring_Mag:DH_A02y	18.3700	-0.4031	8.6205	-0.5458	7.2524
	Ring_Mag:Q_L LQE	2 6.060	9.769 2.300	0. 121	0.0000 0.000		DR6	19.6700	-0.5784	9.8963	-0.7785	8.9740
	ELEMENT_C6 L011	1 6.560	7.630 1.978	0.130	0.0000 0.000	1	Ring_Mag:Q_A04x	19.8950	0.6711	9.8752	-2.0393	9.6019
	Ring_Mag.u_3 LQE	3 6,710	7 051 1 882	0 133	0 0000 0 000		ELEMENT_CENTER.Ring	19.8950	0.0711	9.8752	-2.0393	9.6019
	Bing Mag O R1Q02	1 7.610	6.969 -1.776	0.156	0.0000 0.000	1	Ring_Mag.Q_A04y	20.1200	1.6438	9.3039	-3.53/9	10.8448
CO	ELCHENT TO LOB	4 7.760	7.515 -1.866	0.159	0.0000 0.000		Ding Mag(0 405x	21.4200	0.1060	0.3093	0.0010	22.1499
CN	LO21	1 8.610	11.118 -2.373	0.174	0.0000 0.000	1	ELEMENT CENTER Ping	21.0700	-0.1900	4.0017	0.0210	24.1017
	DB8 LQE	5 8,760	11.843 -2.462	0.176	0.0000 0.000	i	Ring Mag() A05y	22 3200	-1.7166	5 6903	6.4200	20 7849
							DR8	23 1200	-2 2715	8 8808	4 8001	11 8009
							Ring Mag(O A06x	23 4300	-0.6072	9 7909	2 4023	9.6107
							ELEMENT CENTER Bing	23,4300	-0.6072	9 7909	2 4023	9.6107
							Ring Mag Q A06y	23 7400	1 1964	9 6046	0.5775	8 7045
\mathbf{C}		a of Tree!	an fun	+	aletaire -	1	DR9	24.6400	0.9686	7.6561	0.4396	7,7891
- U.O	IIIDarisoi	() [[W1	ss lunc	uon (optaine		Ring_Mag:DH_A03x	25.6900	0.7058	6.0205	0.3892	6.7846
\mathbf{c}							ELEMENT CENTER:Ring	25.6900	0.7058	6.0205	0.3892	6.7846
-			~				Ring_Mag:DH_A03y	26.7400	0.4430	4.7254	0.3120	6.1543
by MAD and VAL (200) (1.96 (1.70))							DR10	30.2400	-0.4430	4.7254	-0.3120	6.1543
UY	IVIAD al	IU AAL	۳ (4.0	U, 4. <i>1</i>	/0/		Ring_Mag:DH_A06x	31.2900	-0.7058	6.0205	-0.3892	6.7846

ELEMENT_CENTER:Ring_... 31.2900

32.3400

Ring Mag:DH_A06y

6.7846

-0.3892

-0.4396

6.0205

-0.7058

-0.9686

Summary

- The preliminary physics needs has been identified.
- The work of high level application software has started. Part of XAL has been transplanted to CSNS, and some new apps have also been developed.
- The application software work will be continued, and the fundamental software package is expected to be available for day 1 commissioning within one year.

Thank you for your attention!